Seminar Content

Part 1:

Part 1 begins with a discussion on the fundamentals of vehicle dynamics–a quick review of definitions and terminology to avoid any confusion due to different automotive cultures or habits. Then you’ll move onto tires and discuss why and how much the grip, balance, and performance of a car is decided by the contact patch forces and deflections. The last section is spent on aero maps, gurney flaps, and static and dynamic ride height settings of aerodynamics.

Part 2:

In Part 2, aerodynamics will wrap up with forces and moments in the suspension stiffness choice. Then, you’ll move into kinematics and learn about setting up and designing your suspension. You’ll also cover steady state basics and start the steady state weight transfer section–this is where you’ll become familiar with  fundamentals and understand how the elastic and geometric weight transfers affect the balance of the car. At this point, you’ll start to develop a clearer picture of what was learned in Part 1 with tires and the correlation with what is occurring in the vehicle.

Part 3:

In Part 3, you’ll finish up the weight transfer discussion that started in Part 2. Then, you’ll go through the important yaw moment diagram methodology where you’ll begin to understand how aerodynamics, roll centers, anti-roll bars, and spring stiffness influence the balance of the car as well as its control and stability. Once you’ve covered the vehicle dynamics from tire to roof, you’ll learn important methodology in analyzing data. You’ll wrap up the seminar with data acquisition and new ways to use your data to enhance and understand vehicle performance.

Topics covered


Tires are the only elements of your racecar in contact with the ground, and as such, it is vital to understand why and how much the grip, balance, and performance of a car is decided by the contact patch forces and deflections. We’ll also cover tire testing, analysis, and how to use tire data in racecar design and setup.


After a review of aerodynamics basics, we’ll focus on the understanding of aero-maps, wings, gurney flaps, static and dynamic ride height settings, and how to integrate them into the design of a suspension.


See why poorly designed kinematics cannot be “patched” by springs, anti-roll bars, and shocks; and why (from the design to on-track testing and racing) understanding the effects of kinematics is essential to the efficient use of race tires. We’ll also explain the essential differences between kinematic and force roll centers as well as kinematic and force pitch centers.

Steady state weight transfer

Understand, step-by-step, the weight transfer calculation in steady state. See the influence of springs and anti-roll bars on weight transfer distribution as well as the influence of tire vertical stiffness and chassis torsional stiffness. You’ll receive a guided exercise on weight transfer calculations under combined lateral and longitudinal accelerations.

Shocks, ride, and transient weight transfers

After a brief description of damper technology, we’ll focus on the damper settings’ influence on tire load, tire load consistency, and racecar performance. A guided exercise related to spring and damping calculations as well as selection and fine-tuning of these suspension elements will help you to diminish the amount of time spent in testing and improve your understanding of simple simulation tools.

Data acquisition

We’ll explain both technical and practical aspects of data acquisition used to develop racecar and race driver performance. This knowledge will help you appreciate the challenges and satisfactions you face with data acquisition system understanding, choice, installation, and calibration as well as efficient data analysis. We’ll focus on mathematical data analysis and its direct application to race driver performance, racecar tire performance, and endurance evaluation.

Car design, tuning modification and chassis setup

Young and experienced racecar engineers alike have acquired new ideas, new engineering principles, and new perspectives related to car design and testing due to this seminar. You will receive practical information and perspectives on in-shop and on-track car setup. Our “tips and tricks” focus on engineering and constitute a practical application of vehicle dynamics knowledge.